CHEMISTRY STUDY MATERIALS FOR CLASS 12 (NCERT Based Notes of Chapter - 11) GANESH KUMAR DATE: 26/09/2021

Aldehyde, Ketones and Carboxylic Acid

These are compounds containing carbon-oxygen double bond (>C=O) called carbonyl group. In aldehydes, the carbonyl group is bonded to a carbon and hydrogen while in ketones; it is bonded to two carbon atoms. The carbonyl compounds in which carbonyl group is bonded to oxygen are known as carboxylic acids, and their derivatives (e.g. esters, anhydrides) while in compounds where carbon is attached to nitrogen and to halogens are called amides and acyl halides respectively. The general formulas of these compounds are:

Aldehydes and Ketones

Nomenclature:

The common names of most aldehydes are derived from the common names of the corresponding carboxylic acids by replacing the ending –ic acid with aldehyde. The position of the substituent in the carbon chain is indicated by Greek letters α , β , γ , δ , etc.

The common names of ketones are derived by naming two alkyl or aryl groups bonded to the carbonyl group and by suffixing ketone. The positions of the substituents are indicated by Greek letters, $\alpha \alpha'$, $\beta \beta'$ and so on.

The IUPAC names of open chain aliphatic aldehydes and ketones are derived from the names of the corresponding alkanes by replacing the ending –e with '–al' and '–one' respectively. In case of aldehydes the longest carbon chain is numbered starting from the carbon of the aldehyde group while in case of ketones the numbering begins from the end nearer to the carbonyl group.

Some examples are:

Compound	Common name	IUPAC name		
ALDEHYDES				
НСНО	Formaldehyde	Methanal		
CH₃CHO	Acetaldehyde	Ethanal		
(CH ₃) ₂ CHCHO	Isobutyraldehyde	2-Methylpropanal		
CH ₃ CH(OCH ₃)CHO	α-Methoxy	2-Methoxypropanal		
	propionaldehyde			
CH ₃ CH ₂ CH ₂ CH ₂ CHO	Valeraldehyde	Pentanal		
CH ₂ =CHCHO	Acrolein	Prop-2-enal		
CHO CHO	Phthaldehyde	Benzene-1,2- dicarbaldehyde		
CHO Br	m-Bromobenzaldehyde	3-Bromobenzene carbaldehyde Or 3-Bromobenzaldehyde		

KETONES				
Compound	Common name	IUPAC name		
	Acetone	Propanone		
CH ₃ COCH ₂ CH ₃	Ethyl methyl ketone	Butanone		
CH ₃ COCH ₂ CH ₂ CH ₃	Methyl n-propyl ketone	Pentan-2-one		
CH ₃ CH ₂ COCH ₂ CH ₃	Diethyl ketone	Pentan-3-one		
(CH ₃) ₂ CHCOCH(CH ₃) ₂	Diisopropyl ketone	2,4-Dimethylpentan-3- one		
(CH ₃) ₂ C=CHCOCH ₃	Mesityl oxide	4-Methylpent-3-en-2-one		
CH ₃	α-Methylcyclohexanone	2-Methylcyclohexanone		

Preparation of Aldehydes and Ketones

1. By oxidation of alcohols: Primary alcohols on oxidation with mild oxidising agents like CrO₃ to give aldehydes while secondary alcohols give ketones.

R-CH₂OH ____ R-CHO

Primary alcohol Aldehyde

 $R_2CHOH \xrightarrow{[0]} R_2CO$

Secondary alcohol Ketones

 By dehydrogenation of alcohols: Alcohols when heated with Cu or Silver catalyst at 573K, we get carbonyl compounds. Primary alcohols give aldehydes, while secondary alcohols give ketones.

> R-CH₂OH $\xrightarrow{Cu/573 \text{ K}}$ R-CHO Primary alcohol Aldehyde R₂CHOH $\xrightarrow{Cu/573 \text{ K}}$ R₂CO Secondary alcohol Ketones

3. By ozonolysis of alkenes: Alkenes add ozone followed by hydrolysis with zinc dust and water, we get aldehydes or ketones.

 $\begin{array}{c} CH_{3}CH=CH_{2}+O_{3}\longrightarrow CH_{3}-\overrightarrow{CH} CH_{2} \\ Propene \\ O \\ Propene ozonide \end{array} \xrightarrow{O} CH_{3}CHO + HCHO \\ Ethanal \\ Methanal \end{array}$

4. By hydration of alkynes: Alkynes add water in the presence of H₂SO₄ and HgSO₄ to give carbonyl compounds. Ethyne (acetylene) gives acetaldehyde and all other alkynes give ketones.

Preparation of Aldehydes

1. From acyl chloride (Acid chloride) [Rosenmund's Reduction]:

Acid chlorides react with hydrogen in presence of Pd supported on $BaSO_4$, we get aldehydes. This reaction is called Rosenmund's reduction.

Benzoyl chloride

Benzaldehyde

2. From nitriles and esters: (Stephen reaction)

Nitriles when reduced with stannous chloride in the presence of hydrochloric acid, we get imines, which on hydrolysis give corresponding aldehyde. This reaction is called *Stephen reaction*.

 $\begin{array}{ccc} \text{RCN} + \text{SnCl}_2 + \text{HCI} & \longrightarrow & \text{R-CH} = \text{NH} \xrightarrow{\text{H3O+}} & \text{R-CHO} \\ \text{Nitrile} & \text{Imines} & \text{Aldehyde} \end{array}$

Nitriles can also be selectively reduced by *diisobutylaluminium hydride* (DIBAL-H) to imines followed by hydrolysis to aldehydes. DIBAL-H does not affect other reducable groups like double bonds.

R-CN -	1.AIH (i-Bu)	² R-CHO	
Nitrile	2. H2O	Aldehyde	
CH₃-CH=C	H-CH ₂ -CN	1. DIBAL-H 2 H2O	CH ₃ -CH=CH-CH ₂ -CHO

Esters are also reduced to aldehydes with DIBAL-H.

CH₃-CH₂-COOCH₃ Methyl Propanoate
